Dovi Scheiner, 1B11 Operating Systems Coursework

Page 3 of 6

Cover Sheet

Name: Dovi Scheiner

Course Module: 1B11 Operating Systems

Handing in: Operating Systems Coursework

Date due: 12th January 2000

Degree: MACS

Tutor Name: Sean Holden

1B11 Operating Systems Coursework
Question 1

Explain what happens in the Operating system between a user application making a system call to read sector 50 from disk and the data being returned to the user's buffer.

Before the user application makes the system call to read from disk, the processor is in user mode. The user mode restricts access to the hardware and in this state the processor cannot speak to the DMA controller.

When the user application makes a system call to the operating system to read sector 50 from disk, the processor's state is automatically switched from user mode to kernel mode. This operation is handled by the operating system for safety reasons so the user cannot directly change the processor mode. Now that the processor is in kernel mode it can speak to the DMA controller (no restriction to access hardware).

The system call sets up a trap to handle the DMA controller's interrupts. The system call also prepares the buffer in the RAM, it reserves a space in the physical RAM for the data that is read from the disk and transferred to the physical RAM. This buffer in the physical RAM is called the user's buffer. The user's buffer is locked by the system call in order that it is not swapped (i.e. removed from the physical RAM to the hard disk (virtual memory)). (See diagram 1)

The processor sends a message to the DMA controller to read from the disk and put the data into the physical RAM. This message contains the address, sector 50, for which the DMA controller has to read from and the quantity of data to transfer to the physical RAM.

The user process is suspended and the generic I/O handler resumes the next ready process. At this point the DMA controller reads from the disk and puts the data into the physical RAM. (See diagram 2)

When the DMA controller finishes reading from disk (and putting the data into the physical RAM), it generates an interrupt. Each interrupt has an ID of where it came from. Thus the interrupt generated has the ID of the DMA controller. The interrupt is sent to the processor and stops the processor. The trap notes the ID of the interrupt and sends a message to the DMA controller – "why did you send this interrupt?". The DMA controller sends back a message to the trap – "I have finished". The trap, which was generated by the original system call (the trap is specific to the system call), informs the processor to send back control and restarts the original user process.

Thus, sector 50 has been read and the data is sitting in the user buffer.

Memory Map

0x0000
empty

DMA controller/

user's buffer
(
This area is locked so it is not swapped to disk
This buff is where the DMA controller puts data after reading sector 50 from disk.

empty

other data
 swap to disk

empty

All other areas of physical RAM maybe swapped out to disk if also unlocked.

other processes

user processes
swap to disk

empty

Physical Memory

Diagram 1 – shows an example memory map with the user's buffer locked while other buffers

 (which are unlocked) being swapped to disk.

Diagram 2 – shows the basic internal structure of a computer and how the DMA controller reads

from disk and sends data to the physical RAM.
Question 2

a) Shortest job first, run to completion:

note: 2 jobs of equal size are decided by first come first served

 TTC = CPU Time + one contact switch

Job Number
CPU Time
TTC

3
100
150

1
200
250

4
300
350

7
300
350

9
300
350

6
400
450

5
500
550

2
600
650

10
600
650

8
700
750

Total = 10
Total = 4000

Context Switching = 500
Total = 4500
Average = TTC / no. jobs
 = 4500/10

 = 450 CPU Time/job

Efficiency = useful work / total work
 = 4000/4500 = 0.889

 or 88.9 %

b) First come first served, run to completion:

note: TTC = CPU Time + one contact switch

Job Number
CPU Time
TTC

1
200
250

2
600
650

3
100
150

4
300
350

5
500
550

6
400
450

7
300
350

8
700
750

9
300
350

10
600
650

Total = 10
Total = 4000

Context Switching = 500
Total = 4500
Average = TTC / no. jobs
 = 4500/10

 = 450 CPU Time/job

Efficiency = useful work / total work
 = 4000/4500 = 0.889

 or 88.9 %

iv) The main benefit of these algorithms (a and b) is efficiency. In the examples they are 88.9% efficient, 10-15% more than the other algorithms.

In particular each has a benefit over each other.

a) Allows all short processes to be completed first.

b) Allows one to theoretically choose the order of the processes. One will also know the order in which each process will be completed.

c) First come first served, time sliced (150 unit time):

note: Contact Switch Time = before each slice of each job there is a context switch

 Once a job is completed a context switch occurs and the next process begins. This happens even if only part of the time slice was used.

Job Number
CPU Time
T1
Rem 1
T 2
Rem 2
T 3
Rem 3
T 4
Rem 4
T 5
Rem 5
TTC = CPU time +

Context Switch Time
C #

1
200
150
50
50
0

200 + 2*50 = 300
2

2
600
150
450
150
300
150
150
150
0

600 + 4*50 = 800
7

3
100
100
0

100 + 1*50 = 150
1

4
300
150
150
150
0

300 + 2*50 = 400
3

5
500
150
350
150
200
150
50
50
0

500 + 4*50 = 700
8

6
400
150
250
150
100
100
0

400 + 3*50 = 550
6

7
300
150
150
150
0

300 + 2*50 = 400
4

8
700
150
550
150
400
150
250
150
100
100
0
700 + 5*50 = 950
10

9
300
150
150
150
0

300 + 2*50 = 400
5

10
600
150
450
150
300
150
150
150
0

600 + 4*50 = 800
9

Total = 10
Total = 4000

Total = 5450

Context Switching = 1450

Average = TTC / no. jobs
 = 5450/10

 = 545 CPU Time/job

d) First come first served, time sliced(250 unit time):

note: Contact Switch Time = before each slice of each job there is a context switch

 Once a job is completed a context switch occurs and the next process begins. This happens even if only part of the time slice was used.
Efficiency = useful work / total work
 = 4000/5450 = 0.734

 or 73.4%

Job Number
CPU Time
T1
Rem 1
T 2
Rem 2
T 3
Rem 3
T 4
Rem 4
T 5
Rem 5
TTC = CPU time +

Context Switch Time
C #

1
200
200
0

200 + 1*50 = 250
1

2
600
250
350
250
100
100
0

600 + 3*50 = 750
8

3
100
100
0

100 + 1*50 = 150
2

4
300
250
50
50
0

300 + 2*50 = 400
3

5
500
250
250
250
0

500 + 2*50 = 600
4

6
400
250
150
150
0

400 + 2*50 = 500
5

7
300
250
50
50
0

300 + 2*50 = 400
6

8
700
250
450
250
200
200
0

700 + 3*50 = 850
9

9
300
250
50
50
0

300 + 2*50 = 400
7

10
600
250
350
250
100
100
0

600 + 3*50 = 750
10

Total = 10
Total = 4000

Total = 5050

Context Switching = 1050

Average = TTC / no. jobs
 = 5050/10

 = 505 CPU Time/job

Efficiency = useful work / total work
 = 4000/5050 = 0.792

 or 79.2%

e) Shortest job first, time sliced (250 unit time):

note: Contact Switch Time = before each slice of each job there is a context switch

 Once a job is completed a context switch occurs and the next process begins. This happens even if only part of the time slice was used.

Job Number
CPU Time
T1
Rem 1
T 2
Rem 2
T 3
Rem 3
T 4
Rem 4
T 5
Rem 5
TTC = CPU time +

Context Switch Time
C #

3
100
100
0

100 + 1*50 = 150
1

1
200
200
0

200 + 1*50 = 250
2

4
300
250
50
50
0

300 + 2*50 = 400
3

7
300
250
50
50
0

300 + 2*50 = 400
4

9
300
250
50
50
0

300 + 2*50 = 400
5

6
400
250
150
150
0

400 + 2*50 = 500
6

5
500
250
250
250
0

500 + 2*50 = 600
7

2
600
250
350
250
100
100
0

600 + 3*50 = 750
8

10
600
250
350
250
100
100
0

600 + 3*50 = 750
9

8
700
250
450
250
200
200
0

700 + 3*50 = 850
10

Total = 10
Total = 4000

Total = 5050

Context Switching = 1050

Average = TTC / no. jobs
 = 5050/10

 = 505 CPU Time/job

Efficiency = useful work / total work
 = 4000/5050 = 0.792

 or 79.2%

iv) The main benefit of these algorithms (a and b and c) is equality of time to use CPU.

In particular each has a benefit over each other.

c) Allows short jobs to be completed efficiently (few contact switches) while still processing longer jobs. Good if the majority of jobs are short

d) Similar to c) except that its main benefit is if the majority of jobs are longer than c)

e) Allows shortest jobs to be completed first and being efficient with longer jobs.

Which of these algorithms would be preferable for scheduling a multi-user processor? Why?

Answer:
either
d) first come first served, time sliced (250 unit time):

or
e) shortest job first, time sliced (250 unit time):

Run to completion is not a good option for 2 reasons:

a) Shortest job first, run to completion:

Long jobs may never be completed, as they would always be pushed to the back of the queue by shorter jobs

b) First come first served, run to completion
Long jobs would delay the processing of shorter jobs. For example one would not be able to type in a word processor while a long job is being executed.

Therefore time slicing is needed.

Assuming that example to the fist part of question 2 is typical of job times:

c) first come first served, time sliced (150 unit time):

This algorithm is not so efficient as there is a lot of context switching.

Thus we are left with:
d) first come first served, time sliced (250 unit time):

e) shortest job first, time sliced (250 unit time):

Both d) and e) are most efficient (regarding time slicing) as there is less context switching than c).

With e) short jobs are completed first. This has the benefit of continuity for shorter jobs, which a user would prefer, while with a longer job a user would be prepared to wait a while longer. For example - one can wait for Word to load (a long process) but it would be rather irritating to have even a small delay in typing in word. However, if many small jobs continually queue up, then longer jobs may not be executed.

With d) longer jobs will always be executed even if smaller jobs continually queue up (there is no jumping of the queue). However, shorter jobs will have a delay as longer jobs are being executed.

Overall d) and e) are most preferable. Which to choose depends on the specific situation.

Which of these algorithms would be preferable for scheduling a multi-user print server? Why?

(I assume this question means the multi-user print server orders print jobs in a queue to be printed. The print jobs are sent from various users to the server.)

Answer: b) First come first served, run to completion:

Time slicing is in appropriate, as entire print jobs must be printed (usually). Thus run to completion is the only solution in this respect. The only question is whether shorter jobs should jump the queue. This depends on who are using the print server. It seems that in a university context first come first served is more preferable as people are continually sending in print jobs and a long job may wait in the queue for a long time.

Processor

Physical

 RAM

I/O Device

Disk

DMA Controller

bus – this is the group of wired electronics

 connecting the different components.

DMA controller reads sector 50 from disk.

DMA controller puts the data read from disk into the physical RAM.

The processor is thus free to resume next ready process.

